Africa Business Communities

Kevin Avila: 6 IoT Applications that Improved Lives in Africa – A Story of 6 Countries

As explained in previous articles “What is IoT? A short, simple explanation” and “Top 5 Ideas for IoT That Could Change your Life", the Internet of Things (IoT)-related technologies are currently booming at an unprecedented pace. There are hundreds of new ideas on how businesses can benefit from the IoT concept, and this list is expanding every single day.

The last seven years have seen a rise in activities geared towards IoT across the globe among technology practitioners, private businesses and education institutions. In 2013, it was estimated that there were about 80 things being connected to the internet per second, and by 2020 it is estimated that about 250 things will be connected to the internet per second, that’s´ about 50 billion things in total all connected the internet.

With this massive number of interconnected things, businesses all over the world are positioning themselves to tap into the huge potential that IoT brings. The African region has been markedly slower in embracing the IoT concept compared to most developed nations, but Africa is now increasing it level of intake of IoT. Businesses in countries all over Africa are now using IoT applications to improve their business environment and to improve the lives of the citizens.

IoT adoption in Africa is now an area of great interest. Below are great examples of how IoT has helped businesses and revolutionize peoples´ lives in 6 countries in Africa: Tanzania, South Africa, Kenya, Nigeria, Egypt, and Namibia.

1. Preventing Oil Pilferage in Tanzania

Usangu Logistics is a heavy transport company with a fleet of over 100 trucks and tankers dedicated to serving thousands of customers in Tanzania with oil, lubricants, and other bulky products. One immediate challenge that the company faced was that after a tanker is loaded with the product for transport to various locations, the drivers would often pilferage the oil along the way, and would later sell the stolen oil in the black market. The company’s trucks and tankers used a combination of a lock  system  intertwined  with  a  metal  loop  that  is  fitted around the closing mechanism of the tank’s hatch. However, the system could not prevent the driver in possession of the lock’s combination from opening the hatch. The company could not completely control the drivers and did not know when, where, and how much oil had been stolen along the way. This resulted in significant losses for the company, a problem that needing solving. 

The IoT Solution – RFID

The immediate solution came in the form of an IoT application through the use of radio frequency identification (RFID). An  IoT-enabled  gateway  device  is  attached  to  the  truck’s  cabin area,  and the  seals are tagged with  RFID-enabled  tags which are  fastened  to the tracks´ hatch. The tag transmits signals to the gateway device every eight seconds, and the signal is sent to HQ or main office for interpretation and further action. The software will store the seal status and location of the trucks, so the truck and seal information can be monitored real-time. Any attempt to open the hatch is recorded, and the culprit can immediately be known. The implementation of this IoT-enabled solution resulted to a very severe drop in cases of pilfering of the oil that the trucks and tankers were carrying.

2. Electronic Tolling System in South Africa

IoT began  in  South  Africa  over  a  decade  ago,  and  has  been shaping  the  country  for  the  last  ten  years  without many people noticing it. South Africa has been building IoT technology for many years, including the building of a nationwide network of sensors to connect everything from electricity grids to traffic  controls.

E-toll System in Gauteng Highway

At  the  beginning  of  2012,  the  South  African National  Roads  Agency  Limited  (SANRAL)  introduced an IoT-based E-tolling system in Gauteng Highway. The E-toll system called  the  Open  Road  Tolling  is  meant  to  collect  tolls electronically  without  human  intervention  since  there  are no physical booths on the highway. The IoT system charges all vehicles using the highway without them slowing down or stopping. Simple overhead gantries are fitted with toll  collection  devices which have the capability  to  recognize  an electronic tag  attached  to  the  vehicles  as  it  passes  through  the  gantries. The vehicle owners  are  supposed to  purchase the IoT-based electronic tags and fit  it in  their  vehicles,  and the  tags  can  also  be  loaded whenever  the  credit  gets to zero.  With this IoT-based technology, traffic jams have been reduced dramatically. The IoT-based tags can be easily purchased or reloaded at stores around the country.

3. Waste Management Systems in Kenya

Nairobi County in Kenya have been grappling with waste management issues for a long time. In order  to  tackle this  problem, Nairobi officials approached  IBM  to  develop  an  IoT- based  application  for  waste management. Basically,  the  idea  is  to  develop  a  solution  that can  be  installed  in  the waste  collection  fleet  to  monitor them in real-time. The IoT application is also meant to create a digital map of the Nairobi streets. 

IoT-Based Smart Sensors for Waste Management

The IoT-based solution called for the fleet of waste collection trucks to be installed with smart sensors that would tell when the vehicles are in the garage or on the road. The IoT-based sensors can also check dumpsites to see if they are full and need to be drained, checks how long the waste collection truck has taken in traffic, and the time they take to collect garbage. The  IoT application  is  also  expected  to automatically monitor the driver’s behavior, detect  speed  bumps and  potholes,   and check  fuel  usage  by  the  driver.  The IoT-based initiative has  enabled  Nairobi County to  track  the  garbage  fleet  and  ensure that  the  trucks  are  doing  their  job  at the allotted  time.  The smart sensors allowed Nairobi County to see great improvements during the trial period as collected waste volumes tremendously increased.

4. Product Verification Initiative in Nigeria

Faced  with a perennial  drug counterfeiting  problem,  Nigeria’s  National Agency for Food  and Drug  Administration and Control (NAFDAC)  in  2010  resorted  to  the IoT-based product  verification initiative  to curb drug counterfeiting by using Radio  Frequency  Identification  (RFID). The IoT-based technology was carried out in collaboration with Verification Technology Limited (VTL). The IoT solution  used  tags equipped  with  RFID  to  secure  the  integrity  of  the  drugs throughout  the  supply  chain,  starting  from the manufacturers,  to the distributors,  wholesalers,  retailers, and consumers.

RFID Tags to Prevent Counterfeit Drugs

The RFID tags are expected to track down the drug’s path as it moves across the supply chain. In order to verify the drug’s authenticity, special RFID scanners will be placed at the port of entry. It is also expected that RFID scanners will be purchased by hospitals, pharmacists, and manufacturers in order to have a collective effort in dealing with the problem of drug counterfeiting in Nigeria.

5. Remote Appliance Control in Egypt

Egypt has shown that IoT solutions can be used to solve societal problems through innovation. A  Cairo -based  technology firm called Integreight announced that it has developed an IoT chip that can be integrated  with  modern appliances  like  refrigerators,  cameras, TVs, washing machines, etc. This IoT-based application named 1sheeld gives users the capability to use their appliances remotely by simply connecting the chip to their smartphones.

Remote Control through 1sheeld

The 1sheeld technology uses an Arduiono board, and the 1sheeld application can then be accessed from a smartphone by using Bluetooth.  Using  the 1shield  library, codes can be written into  the  Arduiono  software application  before  uploading  it to  the  board.  This allows the control of many different sensors that are available in the board. There are other IoT-based proposals underway in Egypt, including using sensors to undertake precision potato farming and bee keeping.

6. Electronic Dispensing Tools (EDT) in Namibia

The small South Western African nation is not to be left behind in the field of IoT. In order to improve the effectiveness of antiretroviral drugs, Namibia implemented an IoT-based electronic dispensing tool.  Pharmacists must dispense the correct medicine in correct amounts to patients, and if a patient misses medication or is given too much, it becomes a very big health problem.  Pharmacists  require  at least some  minimal  information  about  the  patients’ medical history,  and this  is extremely necessary  if  the  patient  needs optimized  care,  and  for  the  pharmaceutical  providers to effectively manage their medicine inventory.

EDT for Accurate Dispensing of Medicine

Electronic Dispensing Tools help pharmaceutical providers to collect, manage, and generate the necessary records that are useful for accurate dispensation of medicine.  The data collected includes the patients’ profiles and the medicine inventory. The IoT-based devices can also manage the inventory and logistics of the medicine, alert patients of upcoming appointments using SMS, allow users to work on the same database at the same time, and allows for customized medical reporting functions.

To learn more about the IoT Progress Report for Africa, you can read the very comprehensive paper by Nashon Onyalo, Hosea Kandie, and Josiah Njuki, which was published in the International Journal of Computer Science and Software Engineering (IJCSSE).

In Africa, almost all the countries have developing economies, and they will benefit the most in adopting applications developed with IoT platforms. IoT will change peoples´ lives and improve processes, services, and ways of life. IoT is a  cutting -edge  technology  that  is best suited  to  developing  markets,  bringing  with  it  flexible  connectivity  for  devices  across  the  entire African region.

 

Written by Kevin Avila, Engineer, Vizocom

This article was first published on Vizocom's blogpage 

 

Share this article